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Abstract—The design of a conceptual Mars ascent vehicle is a
challenging problem. In order to aid the vehicle and mission
concept design it is important to understand the driving design
parameters and the expected performance in the presence of
model errors and uncertainties. An existing six degree of free-
dom simulation model is analyzed on a statistical basis using
the methods available in the Design Analysis Kit for Optimiza-
tion and Terascale Applications toolkit. The methods utilized
include conventional Monte Carlo techniques, metamodeling
via polynomial chaos expansions, and global variance-based
sensitivity analyses. Two additional analysis methods referred
to as “Monte Carlo filtering” and ”Classification trees” are
used to determine which uncertain parameters are driving the
performance of the vehicle. Monte Carlo filtering provides a
methodology to determine which parameters cause qualitatively
different behavior while the classification trees use heuristics
to partition the input space and assign probabilities to each
partition. These methods serve as qualitative descriptors of
model sensitivity while variance-based global sensitivity analysis
seeks a quantitative mapping from total output variance to the
variance of individual inputs. Application of these techniques
to several outputs of a Mars ascent vehicle concept simulation
indicates that only a select few input factors dominate their
variance.
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1. INTRODUCTION
A Mars Ascent Vehicle (MAV) is a conceptual rocket that
would put into Mars orbit a container with geological and
atmospheric samples from Mars. The container, called an
Orbiting Sample (OS), would remain in orbit until an Earth
return vehicle captures it and returns it to Earth for analysis.
The design of a MAV is a challenging problem: it would have
to endure a trip to Mars, including violent Earth launch and
Mars landing, survive up to a year on the Mars surface at
very low temperatures, and be capable of accurately injecting
an OS into a designated orbit. Furthermore, it would have
to present low mass and compact packaging to be able to be
delivered to Mars on an MSL-class lander. The MAV concept
could also be considered to be a step towards the technology
developments needed for human colonization of Mars.

There are multiple MAV concept architectures and design
options available: from different number of stages to propul-
sion technology alternatives and aerodynamic features. In
addition to these vehicle design options there are mission
design parameters that play an important role: launch event
characteristics like the launch orientation, and target orbit
being the most relevant. The objective of this work is to
explore the option space and evaluate the impact of the differ-
ent options on the MAV performance and design. Ultimately,
statistical analyses will be a key component in refining these
designs and down-selecting from the available architectures.

Uncertainty quantification (UQ) and sensitivity analysis (SA)
are two closely related ideas. Here UQ is taken to be the
characterization of overall uncertainty in system responses
due to variability in the system’s parameters.[3] SA aims
to determine how this output variability can be apportioned
to each of the uncertain inputs, i.e., which inputs are most
important in determining the uncertainty of the responses of
interest.[4] UQ presents a methodology for determining the
robustness of the system in the presence of uncertain inputs;
SA clarifies the input-output relationships in the model, and
allows for uncertainty reduction and optimization of the sys-
tem’s performance by focusing on the uncertain parameters

1



with the greatest effects on the system’s output. Random
sample Monte Carlo methods are the de facto standard for
UQ of uncertain nonlinear dynamical systems but these meth-
ods should always be complemented or even supplanted by
other techniques. Full factorial design provides a complete
sensitivity analysis by sampling the model for all possible
combinations of inputs. This is not practical when the model
is expensive to evaluate or the uncertainty space is high-
dimensional.

The paper begins with a description of the simulation model
of the MAV underlying all of the analyses presented herein.
The following section discusses the statistical bases for ana-
lyzing the model. The next section presents the results and
the final section concludes the paper and gives an outlook on
future work to be done.

2. SIX DEGREES OF FREEDOM MAV MODELS
The trajectory simulation engine is DSENDS (Dynamics
Simulator for Entry, Descent and Surface landing).[12]
DSENDS is an EDL-specific extension of a JPL multi-
mission simulation toolkit Darts/Dshell (see Ref. [13],[15]
for details) which is capable of modeling spacecraft dy-
namics, devices, and subsystems, and has been used by
interplanetary and science-craft missions such as Cassini,
Galileo, and MSL.[12],[14] DSENDS presents a dynamics
core written in C++ with a user layer written in Python.
All high-level modeling is done in Python, and the low-
level modeling (IMU, propulsion, aerodynamics) is done in
C,C++, or Fortran. The GNC flight software is also written
in C++ and interacts with the simulation through the Python
layer. Each MAV architecture is modeled as a collection of
bodies, actuators, and sensors. The modeled bodies include
the OS, the main engine assembly, propellant tanks, and the
rocket body. Actuators include the OS ejection system which
is comprised of three springs, the reaction control system
(RCS), the main engine. An IMU is the primary sensor; the
simulation implements bias, random walk, and scale factors
for the individual accelerometers and gyroscopes based on
Sensonor STIM300 specifications.[8] See Figure 1 for a com-
plete overview of the simulation model. The aerodynamics of
the MAV are modeled and incorporated via Fortran software
written by Langley Research Center. MarsGRAM 2010 is
used as a model of the Martian atmosphere.[9]

The simulation is governed by a finite state machine. The
sequence of states through which the simulation progresses is
nonlinear and dynamic; the sequence through which an off-
nominal simulation progresses may differ substantially from
that of the baseline scenario. The simulation is run with a
2 ms integration stepsize while the GNC is run at 50 Hz.
Figure 1 shows an overview block diagram of the simulation
capabilities and models included. Only a single stage to orbit
vehicle architecture is modeled for analysis in this work. The
reader is referred to Ref. [18] for details on the simulation.

3. STATISTICAL ANALYSIS METHODS AND
INPUTS

The majority of the analysis is performed using DAKOTA
(Design Analysis Kit for Optimization and Terascale Ap-
plications), an analysis software developed by the Sandia
National Labs.[1],[2] It provides algorithms for optimiza-
tion, sensitivity analysis, and uncertainty quantification. The
DSENDS simulation is connected to DAKOTA via the In-

tegrated Modeling and Uncertainty Quantification package
(imuQ), a software package developed at JPL. imuQ is used
to describe the analysis method and to manipulate input and
output data between the simulation and DAKOTA.

The model was built with statistical analyses in mind and to
that end, a large number of its parameters are governed by
probabilistic distributions to be sampled from by DAKOTA.
It is currently assumed that all inputs are governed by either a
uniform distribution or a Gaussian distribution though future
work will utilize additional distributions as needed to model
the uncertain parameters. The total number of aleatory
variables is 160 which, coupled with the computation time of
a single simulation, prohibits the use of a full factorial design
in analyzing the system. The input factors include variability
in parameters of the main engine and each of six attitude con-
trol thrusters including thrust magnitude, specific impulse,
mounting and alignment errors. Further input factors include
launch orientation, aerodynamic coefficients, atmospheric
conditions, knowledge of initial state, IMU parameters, mass
properties of individual elements, and OS ejection system
parameters.

Monte Carlo

Monte Carlo (MC) methods are ubiquitous in statistical anal-
ysis and uncertainty quantification of numerical simulations
largely due to its ease of implementation. The main idea
behind MC methods is to run the simulation for a number
of samples, each time drawing each uncertain input from its
governing distribution. Statistics such as mean and variance
can then be estimated from the model output. Although
MC methods do not suffer from the curse of dimensionality,
the number of samples required for accurate statistics may
nevertheless be quite large due to their slow convergence. A
number of other techniques exist that attempt to improve upon
the efficiency with which uncertainty is propagated through
the model, including variance-reduction methods like Latin
hypercube sampling (LHS), stochastic expansions like poly-
nomial chaos expansions, and adaptive/importance sampling
to name only a few. A full review of Monte Carlo methods
and other forward uncertainty quantification techniques is
beyond the scope of this paper; for further details see, for
example, Ref. [5]. All MC-based results presented in this
work were sampled using Latin hypercube sampling (LHS)
where the probability distribution of each input variable is
partitioned into equally probable intervals and each interval
is sampled only once. In essence, LHS ensures that the
realizations of probabilistic inputs are representative of the
real variability. LHS is a superior alternative to pure random
sampling because it comes essentially for free in terms of
both implementation and computational effort, and has the
potential benefit that fewer samples may be required to con-
verge to stable mean and variance estimates.

Monte Carlo Filtering—The finite state machine-based sim-
ulation allows for very efficient manipulation of the data
obtained via MC methods. For example, samples that reach
the target orbit and succeed in ejecting the OS can be termed
“behavioral” cases while those that do not (for any variety of
reasons) are deemed “non-behavioral” cases. Note that this is
only one way in which the data can be separated and that the
behavioral and non-behavioral sets can be filtered further in
the same way.

Separation of the MC results in this manner allows for a
form of statistical analysis to be performed via two-sample
Kolmogorov-Smirnov (KS) tests between the behavioral and
non-behavioral sets.[4] Conceptually, the two-sample KS test
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Figure 1. A high-level overview of the MAV simulation architecture.

is used to determine if the underlying probability distributions
of two data sets differ. The KS statistic is computed

DKS = sup
x
|FB(x)− FNB(x)|, (1)

where FB and FNB refer to the empirical cumulative dis-
tribution functions of the behavior and nonbehavioral sets,
respectively, and supx is the supremum function over the
domain x. In order to reject the null hypothesis that the
samples come from the same distribution at a confidence level
α, the KS statistic must satisfy the relation

DKS > f(α)

√
nB + nNB

nBnNB
, (2)

where f(α) is a function that maps confidence levels to
critical values of the two-sample test, and nB , nNB are the
number of samples in the behavioral and non-behavioral sets,
respectively. By performing the KS test on these sets for each
input factor, it is possible to determine which statistically
significant inputs are driving the difference between them.
In this way, MCF provides a qualitative form of SA. One
key reason why MCF is particularly useful is that, unlike
many SA methods, it does not require further simulations,
instead utilizing existing sampled outputs. Additionally,
the method considers the entire range of values that each
uncertain input can take unlike partial derivative methods
that estimate sensitivities point-wise. One limitation is that
the method relies on the marginal distribution of each input
variable and is thus incapable of determining sensitivity to
interaction effects. Figure 2 shows how Eqn. 1 is applied to a
single input factor to determine its test statistic.

Classification Trees

Decision tree learning is a data mining technique utilizing
machine learning. In particular, classification trees are used
herein to partition the input space and assign each partition
a probability estimate regarding the output variables. Tree
learning is a research field in itself so the interested reader is
directed to Refs. [21],[22] for information on the CART de-
cision tree algorithm used in this work. The implementation
used is the Python package scikit-learn’s tree classifier with

Figure 2. Visual representation of the computation of KS
test statistic.

the information theory concept of entropy as its criterion. [20]
Not unlike MCF, classification trees do not require additional
simulations.

Metamodeling

DAKOTA exposes a number of metamodeling techniques that
allow us to create an input-output model that approximates
the results of the original simulation. These models are also
sometimes referred to as “surrogate models” or “response
surfaces.” In general, a metamodel can be expensive to
construct, especially when the original simulation model is
computationally intensive to run and the input space is high
dimensional. It is also difficult to verify the accuracy of such
a model. If, however, a metamodel that accurately captures
the complexity of the underlying model can be obtained then
it can be utilized in a number of different manners. For
instance, it can sampled via MC extremely rapidly relative
to sampling the original model. It may also be subjected
to an optimization routine or used in an optimization under
uncertainty setting due to its computational efficiency. In
this work, we constructed a metamodel using the polynomial
chaos expansion (PCE) method. PCEs are a class of stochas-
tic collocation methods and it is well documented that unlike
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MC, PCE methods scale poorly as the number of stochastic
or probabilistic inputs grows and may be unsuitable for non-
smooth outputs.[16],[17] However, metamodels offer a point
of comparison with MC methods and can also be utilized
in the global sensitivity approach described in the following
section.

Global Sensitivity Analysis by Variance-Based Decomposi-
tion

Global sensitivity analysis can be performed in DAKOTA
via variance-based decomposition. The method involves the
computation of the Sobol’ indices. Variance-based measures
of sensitivity are appealing due to their global nature (i.e. they
measure sensitivity across the whole input space), and the fact
that they can handle nonlinear responses.[4] Computing the
Sobol’ indices requires the computation of multidimensional
integrations that are often performed numerically by using a
sampling method such as LHS. This approach suffers from
the “curse of dimensionality” in that the total number of
model evaluations required scales linearly with the number
of inputs nevaluations = N(ninputs + 2) where N is chosen
by the analyst to achieve a desired accuracy and is generally
hundreds or thousands.[23] Alternatively, the indices are
available in closed-form for several forms of response sur-
faces including PCEs.[6],[16],[17] The main effect sensitivity
index Si and total effect index Ti are computed as

Si =
V arxi

(Y |xi)
V ar(Y )

(3)

Ti =
V ar(Y )− V ar(Y |x−i)

V ar(Y )
(4)

where Y = f(x) is a model output, xi is the ith uncertain
input variable, x−i is the set of all uncertain variables except
the ith. The total effect index is a measure of the proportion
of output Y that can be attributed to input xi, either directly
or through interaction with other inputs. The main effect
sensitivity index is the fraction of the variance in Y that is
due solely to input xi.[2] For a linear, additive model, the
total effect index will be equal to the main effect index for
each input, and the sum of the main effect indices over all
inputs will be unity. When an input’s total index is larger
than its main effect, it implies interaction with one or more
additional inputs in the model, and the sum of either index
over all inputs will not in general be unity.

Bootstrapping

A common way to assess the distributional properties of
statistics generated via sampling (Monte Carlo) is a re-
sampling technique called bootstrapping.[5][19] Resampling
techniques are those that reuse available samples to extract
further information. Bootstrapping refers to random sampling
with replacement of existing samples to construct measures
such as variance, mean square error, or confidence intervals
for a given statistic. For example, the original sampling
data results in a sample mean E[X] and variance V[X] for
an output X. Bootstrapping then further provides a way to
estimate measures of accuracy for V[X], such as V[V[X]].

4. RESULTS
A Monte Carlo simulation with 10,000 samples was con-
ducted using the full MAV model for uncertainty quantifica-
tion and for regionalized sensitivity analyses via the methods
of sections 3-3. All CDFs (cf. Fig. 5), are drawn with

Table 1. UQ results for selected outputs concerning the
final orbit.

3-σ bounds estimated via bootstrapping. The percentiles
given are all bootstrapped estimates as well. Additionally,
a variance-based decomposition was performed on the model
with the number of samples per input was taken to be 315
for a total of 12,600 model evaluations used to estimate the
Sobol’ indices. Although more evaluations would benefit
the quality of the decomposition, the MAV simulation is
sufficiently computationally expensive to preclude a greater
number of total samples.

Model Output Selection

The MAV simulation model has many outputs so a subset of
them must be chosen for analysis. The purpose of a MAV is
to deliver the OS into orbit to be recaptured at some point in
the future. In order to ensure that recapture is feasible, there
will be requirements on orbital insertion accuracy. By first
applying UQ techniques to the problem, variations in final
orbit can be quantified. Then, SA techniques can be used to
convert requirements on insertion accuracy into requirements
on input uncertainty, essentially determining how well the
most important factors must be known in order to meet the
target requirements. The outputs considered are inclination,
periapse and apoapse altitudes, and equivalently semi-major
axis (SMA) and orbital eccentricity.

Liquid injection thrust vector control (LITVC) is modeled in
the MAV simulation. The liquid injected is the same oxidizer
used by the main engine. The total oxidizer carried onboard
the vehicle is a fixed amount, and due to uncertainty it is not
known a priori how much oxidizer LITVC will require, or
how much oxidizer the total impulse to orbit will necessitate.
High oxidizer consumption via LITVC is therefore a risk on
the system. Thus, SA and UQ techniques are applied to study
LITVC performance.

Note that in the following sections a number of input factors
will be labeled with “X” and “Y” components referring to
the two axes orthogonal to the MAV’s roll axis and may also
be referred to as the vehicle yaw and pitch axes respectively.
For a vehicle that is axisymmetric about the roll axis, it is
anticipated that the effects of “X” and “Y” inputs will be
roughly equal.

Final Orbit

Select percentiles concerning the final orbital insertion ac-
curacy are given in Table 1. The significant difference be-
tween the resulting orbit and the onboard navigation system’s
estimate of its orbit indicates that initial knowledge error
about the vehicle’s pitch and yaw axes is the most important
contributor to the variation in periapse and apoapse. This is
confirmed via Monte Carlo filtering the 10% highest and low-
est apoapse cases which indicates that initial attitude errors
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Figure 3. One leaf of a classification tree based on
largest apoapse variations.

Figure 4. Semi-major axis viewed as a function of initial
attitude error with first order trend lines shown.

are an order of magnitude more influential than the next input
factors. A classification tree was generated and the largest
leaf, shown in Figure 3, indicates that if attitude error about
each axis is smaller than approximately 0.5◦ in magnitude,
then the apoapse will remain within the behavioral set. No
other input factors are indicated in any of the other leaves
of the tree. Together with small contributions from the
IMU data, initial attitude errors result in significant velocity
errors which are the dominant factor in the altitude variations.
Inclination is not strongly affected by these factors; its total
deviation across all simulations is less than 2◦, and filtering
based on the largest deviations from the median reveals that
attitude initialization error about the roll axis is instead the
dominant factor.

Automated Linear Fitting—Using UQ samples it is possible
to estimate trends in statistics as a function of a single input
variable. Firstly the entire input range is divided into several
equi-probable partitions (typically 5-10 is sufficient). Then,
the desired statistic (a percentile, mean, etc) in each input
range is computed. A linear least squares regression is then
used to find the best relation between the output and input.
This information allows the designer to estimate what input
range is required to satisfy requirements on the output. For a
given output, the input to use is typically chosen based on the
results of SA, MCF, or measures of dependence.

The 0.5% and 99.5% SMA are fitted as a function of the total
initial attitude error in Figure 4. From the two trend lines
it can be seen that with no initial error in knowledge of the
vehicle’s orientation, the simulated MAV reaches its target

Figure 5. Combined CDF and histogram of the oxidizer
mass used by the liquid injection TVC system.

Table 2. Monte carlo filtering results for high LITVC
usage.

SMA to within ±6 km. This bound increases at a rate of
approximately 26 km per degree of initial attitude error. If a
requirement is imposed that a MAV must deliver the orbiting
sample to within ±25 km of the targeted SMA with 99%
probability, then by subtracting the lower bound from the
upper bound an estimate can be obtained. The magnitude
of the attitude error must be smaller than 0.25◦ in order to
achieve the required ±25 km accuracy under the conditions
in Monte Carlo. Although fitting linear relationships will not
always be applicable, this example shows that it may find
use even in highly nonlinear, coupled system models like a
MAV concept. The method is also not restricted to first-order
fitting.

Thrust Vector Control

Figure 5 shows the thrust vector control usage statistics from
the LHS results. Monte carlo filtering is applied with the
samples with the 10% highest usage considered the non-
behavioral set, and the results, shown in Table 2, indicate
that the pitch aerodynamic coefficient, launch direction, and
main engine misalignments are driving the highest usage.
Aerodynamic forces disturbing the MAV during atmospheric
flight must be controlled via TVC. The MAV simulation
considers launches in all 360◦ of azimuth. Launching oppo-
site the desired direction will require a change in orientation
that is actuated via TVC thereby increasing the amount of
oxidizer expended. Similarly, engine misalignment manifests
as additional perturbations that must be countered by the
control system.
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Table 3. Variance-based decomposition results for
LITVC usage.

Table 3 shows the thrust vector control results from the
variance-based decomposition. The Sobol’ indices for the six
highest contributors, ranked by their total effect index, are
show and there are several items to note. The total index
is larger than the main index by a substantial amount in
almost all inputs, indicating that interactions between inputs
account for a significant amount of the total variance. The
sum over all main effects (note that only the top six are
shown in the Table 3) is 0.33 from which we conclude that
approximately two-thirds of the LITVC variance results from
interactions between two or more inputs. The variance-based
results indicate two additional aerodynamic coefficients are
small contributors but otherwise the decomposition agrees
well with the Monte Carlo filtering results. Recalling from
Section 3 that filtering does not capture interaction effects, it
is appropriate to compare filtering with main effect indices
and in fact, the two produce very consistent results. Not
only do their most important inputs agree, but so too do the
numerical ranking of their effects as well. Note that negative
values for the main index are the result of numerical errors
when the index is near zero, and that increasing the number
of samples will improve the quality of the decomposition.
Looking again at Table 2, it is natural to wonder if the
combined effects of X and Y place engine misalignment
higher in the ranking. The VBD results in Table 3 allow us to
answer that question, however, showing that azimuth actually
has an even stronger interaction so it remains at the top, but
the misalignments do overtake the aerodynamic coefficients
once interactions are considered.

5. CONCLUDING REMARKS
Classical Monte Carlo methods are essential to uncertainty
quantification but additional techniques can augment these
methods to glean more information from sampled data.
Monte Carlo filtering provides an effective way to uncover the
factors driving certain simulation phenomena, and in some
situations can approximate a type of qualitative sensitivity
analysis. A key limitation of filtering is its inability to capture
coupled interactions among inputs and outputs. Classification
trees provide similar analysis but allow for some interaction
effects to be discovered. Three different approaches to sensi-
tivity analysis were utilized, each based on different criteria:
density (MCF), entropy (trees), and variance (VBD), but the
conclusions drawn from each are largely the same.

Ultimately, the application will decide the best combination
of techniques with which to analyze. The dimension of the
uncertainty space and the computational cost of the model
being studied are the most important factors in determining
which methods to apply. There is a tradeoff between the
numerical cost of each analysis method and the amount of

information it yields. Monte carlo filtering is an efficient
method for approximate sensitivity analysis from given data,
but it does not provide numerical mapping between input
and output variance. Other sensitivity analysis techniques
are capable of providing this information but at significantly
increased computational costs. Metamodeling can reduce
the computational burden by achieving faster convergence
but not all models are amenable to this approach. The high
dimensionality of the MAV simulation’s input space makes it
a poor candidate for such methods.

Finally we note that while the MAV simulation is intended
to reflect reality as closely as possible, no model is perfect
and inferences drawn based on the model must be considered
carefully. The techniques applied in this paper say nothing
about the validity of the model itself.
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